Model-driven deep-learning
نویسندگان
چکیده
منابع مشابه
Melanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملData-Driven Ghosting using Deep Imitation Learning
Current state-of-the-art sports statistics compare players and teams to league average performance. For example, metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected Point Value” (EPV) in basketball [2] and “Expected Goal Value” (EGV) in soccer [3] and hockey [4] are now commonplace in performance analysis. Such measures allow us to answer the question “how does this player...
متن کاملDeep Learning for Event-Driven Stock Prediction
We propose a deep learning method for eventdriven stock market prediction. First, events are extracted from news text, and represented as dense vectors, trained using a novel neural tensor network. Second, a deep convolutional neural network is used to model both short-term and long-term influences of events on stock price movements. Experimental results show that our model can achieve nearly 6...
متن کاملData-Driven Fuzzy Modeling Using Deep Learning
Fuzzy modeling has many advantages over the non-fuzzy methods, such as robustness against uncertainties and less sensitivity to the varying dynamics of nonlinear systems. Data-driven fuzzy modeling needs to extract fuzzy rules from the input/output data, and train the fuzzy parameters. This paper takes advantages from deep learning, probability theory, fuzzy modeling, and extreme learning machi...
متن کاملDiversity-Driven Exploration Strategy for Deep Reinforcement Learning
Efficient exploration remains a challenging research problem in reinforcement learning, especially when an environment contains large state spaces, deceptive local optima, or sparse rewards. To tackle this problem, we present a diversitydriven approach for exploration, which can be easily combined with both offand on-policy reinforcement learning algorithms. We show that by simply adding a dist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: National Science Review
سال: 2017
ISSN: 2095-5138,2053-714X
DOI: 10.1093/nsr/nwx099